
S-1

Supporting Information for

A Deep-Learning Framework for the Automated Recognition of

Molecules in Scanning-Probe-Microscopy Images

Zhiwen Zhu1, Jiayi Lu1, Fengru Zheng1, Cheng Chen2, Yang Lv2, Hao Jiang1, Yuyi

Yan1, Akimitsu Narita3, Klaus Müllen3, Xiao-Ye Wang2, Qiang Sun1*

1Materials Genome Institute, Shanghai University, 200444 Shanghai, China

2State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai

University, 300071 Tianjin, China

3Max Planck Institute for Polymer Research, 55128 Mainz, Germany

*E-mail: qiangsun@shu.edu.cn

Table of Contents

1. t-SNE

2. Image augmentation techniques.

3. Resnet-50 and FPN.

4. More recognition cases.

5. Model performances on testing images with different resolutions

6. Non-maximum suppression.

7. Precision, recall and mAP.

8. User guideline.

9. Materials and methods

10. References

mailto:qiangsun@shu.edu.cn

S-2

1. t-SNE

On one hand, t-SNE in this project can be used to judge whether the clarity and

separability of two molecules meet the standards of machine learning models. On the

other hand, if outliers were found in the t-SNE results (possibly due to manual faults or

poor image quality), they can be excluded when selecting the training set.

Before the t-SNE analysis, we manually crop the molecules from the STM image and

rotate the image to have all the molecules with the same orientation, such that the

distinction between the images of two molecules only comes from their STM

appearances. Given that there may be slight molecular orientation deviations after

manually rotating the images, a random rotation of 10° is added to all the molecular

images to average the deviations. All the molecular images are subsequently resized to

a uniform size and their image colors are converted to a single-channel grayscale

representation and finally flattened into a data stream. The data stream is well adapted

to the t-SNE algorithm.

In this project, we use the t-SNE algorithm built into the scikit-learn library. The code

of our t-SNE analysis can be found on GitHub:

https://github.com/gggg0034/SPM_image_Mask-R-CNN/tree/master.

Table S1. Hyperparameters and values used in the t-SNE algorithm.

Hyperparameters values

sklearn manifold.TSNE N/A

N_components 2

Perplexity 10

Learning_rate 100

N_iter 2000

Angle 0.1

Others by default N/A

In the process of the molecule assessment, we first choose a small area of the STM

image and annotate the molecules manually. This requires human efforts to draw closed

contours on the templating molecules and label them accordingly. t-SNE is used to

identify the separability between two molecules in the STM images, but not used for

molecular labeling. In other words, we rely on human classification to the training

dataset.

Nevertheless, t-SNE provides important signs when the human classification

contradicts the t-SNE results. For example, the t-SNE result shown below was acquired

in the early stage of our experiment. The red and blue points represent the molecules A

and molecules B, respectively. From the t-SNE plot, we clearly see two outliers as

indicated by black arrows. There are two possibilities to lead to these outliers.

https://github.com/gggg0034/SPM_image_Mask-R-CNN/tree/master

S-3

1. The STM probe was in a bad condition (tip shaking, tip touch, tip drift or noise)

when scanning the molecules of RED NO.42 and BLUE NO.84, so that t-SNE

algorithm failed on clustering the molecules.

2. Human eyes made mistakes, and we gave the algorithm wrong label data in the first

place.

Usually, such ambiguous molecules will be avoided when we select images to generate

the training dataset. Therefore, the t-SNE algorithm is efficient and indispensable, but

the supervision by the domain knowledge of the human is also essential for dataset

preparations.

S-4

2. Image augmentation techniques.

We use the Imgaug library for data augmentations. Some image augmentation

techniques are difficult for human eyes to distinguish before and after the image

augmentations. However, they are brand new image data for computers and contain

useful information for machine learning models. In Table S2, we show the effects of

the different image augmentation techniques we have applied in the work.

Table S2. Effects and descriptions of different image augmentation techniques.

Augmentation

techniques
Image example Description

None

The original image

Superpixels

Completely or partially

transform images to their

superpixel representation.

Blur

Blur an image by

computing simple means

over neighbourhoods or

by computing median

values over

neighbourhoods.

Sharpen

Sharpen images and

overlay the result with the

original image.

Emboss

Emboss images and

overlay the result with the

original image.

EdgeDetect

Detect all edges in the

images, mark them in a

black-and-white image

and then overlay the

result with the original

image.

S-5

GaussianNoise

Add noises sampled from

gaussian distributions

elementwise to images.

Dropout

Set a certain fraction of

pixels in images to zero.

Invert

Invert all values in

images, i.e. sets a pixel

from value x to 255 - x.

Add

Add a certain value to all

pixels in images.

Multiply

Multiply all pixels in an

image with a specific

value, thereby making the

image darker or brighter.

Grayscale

Convert images to their

grayscale versions.

Elastic

Transform images by

moving pixels locally

around using

displacement fields.

Contrast

Adjust contrasts by

scaling each pixel to 127

+ alpha * (x - 127).

S-6

Table S3. different augmentation techniques on the model performance. The following

data augmentation methods are based on the completion of the L1 data augmentation

technology. mAP is calculated with an IoU threshold of 0.5.

Augmentation techniques recognition

rates

mean average

precision (mAP)
Add&Mutupiy 0.582 0.335

Blur 0.768 0.625

Elastic 0.806 0.767

EdgeDetect 0.778 0.716

Emboss 0.838 0.737

Sharpen 0.740 0.681

Contrast&Grayscale 0.693 0.514

Dropout&GaussianNoise&Emboss 0.860 0.842

Blur&Sharpen&Dropout&Elastic 0.851 0.825

Dropout&GaussianNoise&Emboss&Blur 0.848 0.827

S-7

3.Resnet-50 and FPN

Figure S1. Structure of Resnet-50 and FPN. Sections with the same color have

corresponding contents. Every block in gray corresponds to a specific operation of

single-layer convolution, pooling or activation. The conv_block and identity_block

consist (orange blocks) of several convolutional layers and activation functions. The

five-layer structure of Resnet-50 consists of several conv_blocks and identity_blocks

(except C1). The five-layer structure of FPN (green block) is obtained by upsampling

the five-layer structure of resnet-50(blue block), superimposing one layer of feature

maps, and then convolving one layer. For example, P3 is formed by upsampling P4 and

stacking C3 with one more convolution.

S-8

4. More recognition cases.

Table S4. Model performances on STM images of other molecular nanostructures.

Molecular system Original STM image Output images

Binary structure

with both

molecules A

(yellow) and B

(blue)

Binary structure

with both

molecules A

(yellow) and B

(blue) in images

with system

instability

Self-assembly of

molecule B (blue)

Self-assembly of

molecule A

(yellow)

S-9

Binary structure

with both

molecule B (blue)

and 4,4'-

Di(Pyridin-4-Yl)-

1,1'-Biphenyl

(yellow)

Binary structure

with both

molecule A

(yellow) and

molecule C (blue)

Trinary Structure

with 4,4'-

dichlorobiphenyl

(green), molecules

A (yellow) and B

(blue)

S-10

5. Model performances on images with different resolutions

Figure S2. Model performances on STM images of the binary molecular self-assembly

with different resolutions. The outputs of the testing STM images with resolutions of

(a) 60*60 pixels, (b) 54*54 pixels, (c) 48*48 pixels, (d) 42*42 pixels, (e) 36*36 pixels,

(f) 30*30 pixels, (g) 24*24 pixels, (h) 18*18 pixels for the individual molecules. (i)

Summary of the recognition rates as a function of the resolution of molecules.

S-11

Figure S3. Model performances on STM images of the molecular self-assembly of

molecule A with different resolutions. The outputs for testing STM images in which

each molecule has a resolution of (a) 100*100 pixels, (b) 90*90 pixels, (c) 80*80 pixels,

(d) 70*70 pixels, (e) 60*60 pixels, (f) 50*50 pixels, (g) 40*40 pixels, (h) 30*30 pixels.

(i) The recognition rates as a function of the resolution of molecules.

S-12

Figure S4. Model performances on STM images of the molecular self-assembly of

molecule B with different resolutions. The outputs for testing STM images in which

each molecule has a resolution of (a) 100*100 pixels, (b) 90*90 pixels, (c) 80*80 pixels,

(d) 70*70 pixels, (e) 60*60 pixels, (f) 50*50 pixels, (g) 40*40 pixels, (h) 30*30 pixels.

(i) The recognition rates as a function of the resolution of molecules.

S-13

6. Non-maximum suppression.

The non-maximum suppression (NMS) algorithm is used to deal with redundant Bbox.

From the thousands of preselected boxes generated by the RPN network to the

ultimately output prediction boxes which have the number of a few dozens, the deep

learning framework applies the NMS algorithm many times. It is first applied after

using the RPN network to filter the preselected boxes with a large intersection and ratio,

and is applied again to filter similar results with a large intersection and ratio after the

border classification has been completed.

Figure S5. Definition of the intersection of Union (IoU): The area of the intersection

of two boxes is divided by the area of the union.

Only two NMS filters are used in the source code of the Mask R-CNN open source

project (https://github.com/matterport/Mask_RCNN). However, when identifying

similar molecules, the prediction scores of both molecule A and molecule B near the

same region are high, and then it is highly possible that a molecule is recognized as

both molecule A and molecule B. In order to solve the problem, we add a layer of NMS

filtering before the final recognition output, which could effectively reduce the false

positive recognitions as indicated in Fig. S8.

Figure S6. An example showing the output bounding box after the NMS filter.

https://github.com/matterport/Mask_RCNN

S-14

Figure S7. Applying the NMS filter. (a),(c) The outputs of the machine learning model

without the NMS filter. (b),(d) The outputs of the machine learning model after adding

the NMS filter. The green mask indicates regions identified as both molecule A and

molecule B. (e) The false positive rate before and after applying the NMS filter.

S-15

7. Precision, Recall and mAP

In order to evaluate the performance of a target recognition model, it is obviously not

comprehensive enough to evaluate through only the recognition rate. In models of

computer versions, metrics like precision, recall and mean average precision (mAP) are

frequently used. The criterion for judging the correct target detection is to compare the

IoU of BBox and Ground Truth. We set the threshold for the IoU at a typical value of

0.5.

TP: True Positive. The classifier predicts that the result is a positive sample, and it is

actually a positive sample.

FP: False Positive. The classifier predicts a positive sample, but it is actually a negative

sample.

FN: False Negative. The classifier predicts a negative sample, but it is actually a

positive sample.

In this study, we define:

Average Precision: Proportion of correctly predicted cases in all the predicted cases.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Average Recall: Proportion of correctly predicted cases in all targets of the picture.

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

In Fig. S9, we plot the prediction results according to the prediction confidence from

high to low, and slowly lower the confidence threshold to gradually obtain more

positive samples.

Figure S8. An example of a diagram of Recall-IoU curve, P-R curve and interpolation

curve.

Another way to define AR: The recall averaged over all IoU∈ [0.5,1.0] and can be

computed as two times the area under the Recall-IoU curve.

During this process, each recall rate corresponds to a unique precision rate. Therefore,

we can get a Precision-Recall curve (P-R curve). The area surrounded by the P-R curve

and the two coordinate axes determines the value of mAP. It can also be inferred that

under ideal conditions, the mAP value is 1. For the P-R curve, the interpolated precision

at a certain recall level is defined as the highest precision found for any recall level.

S-16

Figure S9. The P-R curve and interpolation curve with an IoU threshold of 0.5 obtained

after 10 epochs of training tested on the image in Fig. 3a. The machine model was

trained on the dataset of Fig. 3b with the data augmentation techniques of dropout and

elastic. This model gives a mAP value of 0.98.

S-17

8. User guideline.

8.1 Programming environment requirements

Python 3.8 https://www.python.org/ But we strongly recommend using anaconda to

manage the python environment.

tensorflow 2.6.0 https://tensorflow.google.cn/ The main body of our Mask R-CNN

code comes from an open-source project. Its source code is written by the tensorflow1.0

framework, and we make it compatible with Tensorflow 2.0. We strongly recommend

downloading the GPU version of tensorflow, which will substantially speed up the

training process.[1]

keras 2.6.0 In most cases, the corresponding version of Keras has been embedded in

tensorflow versions of 2.0 and above, but the corresponding version of Keras is not

necessarily compatible with the code.

Numpy 1.22.0 The numpy version cannot be either too high or too low, otherwise

various unexpected bugs may occur.

Scikit-learn 1.0.2 https://scikit-learn.org.cn/ Scikit-learn is a powerful machine

learning library. The t-SNE algorithm API is included in scikit-learn.[2]

cudnn 8.1.10, cudatoolkit 11.2

If you want the tensorflow GPU version to call GPU resources normally, the

installations of the two development packages are essential. Different versions of

tensorflow have stricter requirements on the versions of cuda and cudnn. Please check

the official documentation for more guidance.

(https://tensorflow.google.cn/install/source_windows?hl=en#gpu)

labelme 3.16.7 https://github.com/jameslahm/labelme labelme is an software for image

annotations of 2D or 3D images. Considering the compatibility of label software and

code, please do not update labelme in the code running environment to a version higher

than 3.16.7. But you can still use the latest version of labelme to label images (the new

version is more user-friendly). It is worth noting that the lebelme annotation file is not

upward compatible with the software. But all versions of labelme annotation files can

run under this code.[3]

Imgaug 0.4.0 https://github.com/aleju/imgaug-doc imgaug is a library for image

augmentations in machine learning projects.[4]

Note: In the above we only list the important libraries and corresponding precautions.

We do not exclude other simple error reports that can easily be solved. The detailed

program running environment is accessible on our github

https://github.com/gggg0034/SPM_image_Mask-R-CNN/tree/master

8.2 References of the hardware requirements

CPU AMD Ryzen 7 5800H with Radeon Graphics

GPU NVIDIA GeForce RTX 3070 Laptop GPU 8G

Memory 16G

1 epoch time cost：≤ 25 minutes

https://www.python.org/
https://tensorflow.google.cn/
https://scikit-learn.org.cn/
https://tensorflow.google.cn/install/source_windows?hl=en#gpu
https://github.com/jameslahm/labelme
https://github.com/aleju/imgaug-doc
https://github.com/gggg0034/SPM_image_Mask-R-CNN/tree/master

S-18

CPU Intel Core i5 8300H

GPU NVIDIA GeForce GTX1050Ti Laptop GPU 4G

Memory 16G

1 epoch time cost：≥ 6 hour

Note: The above computer hardware configuration is for reference only. Since the

model training speed critically depends on GPU performance. It is highly recommended

to choose a graphics card with 8G or more video memory.

8.3 Here, we have prepared a framework demo version to illustrate the specific

operations in detail.

a) Select training images

We have prepared an original STM image named 00.png and an image of 00-cut.png

which is cropped from 00.png in the \SPM_image_Mask-R-CNN-master\images.

You can also crop a new 00-cut.png yourself, as long as the bit depth of your image is

24 bit (some cropping methods will change 24 bit to 32 bit because a new transparency

channel is introduced to the image).

Then put the image in the folder \SPM_image_Mask-R-CNN-master\aug_test_in

b) Annotate training images

(1) open labelme

Open the Prompt console as an administrator, switch to the environment where labelme

is installed, type labelme after the console and press enter.

(Of course, one can also find and start it directly in the environment folder)

S-19

(2) annotate molecules

Click on one of the buttons in the red box, find the picture you want to annotate and

open it.

Click the button in the red box on the left to mark the outline of the molecule. When

naming the label, please add a serial number to the name to distinguish the different

molecules, such as molecule A1, molecule A2, molecule B1, molecule B2, other than

molecule A, molecule A, molecule B, molecule B.

Click Save after marking, and a json file with the same name as the image will be

generated.

Put the image file with the json file in

\SPM_image_Mask-R-CNN-master\aug_test_in

If you do not want to modify the parameters and are willing to train with the default

optimal configuration, please skip step (c) and open the

S-20

\SPM_image_Mask-R-CNN-master\workflow.py

to run directly to get the weight parameter. This will take about 40 minutes (depending

on your GPU).

c) Modify the training set data augmentation parameters

(1) L1 augmentation

OpenSPM_image_Mask-R-CNN-

master\Images_Augmentation\geo_aug_img_json.py

Modify the configuration you want to adjust in the code shown in the red box.

Then run the code.

(2) L2 & L3 augmentation

Open SPM_image_Mask-R-CNN-

master\Images_Augmentation\color_aug_img_json.py

S-21

Modify the configuration you want to adjust in the code shown in the red box.

aug_times is recommended to stay between 28-112.

Then run the code.

So far, the training set is generated and saved in

\SPM_image_Mask-R-CNN-master\before

(3) Dataset preprocessing

Run the following three pieces of code in sequence to perform training preprocessing

on the dataset.

\SPM_image_Mask-R-CNN-master\pre_draw_mask.py

\SPM_image_Mask-R-CNN-master\re_write_mask.py

\SPM_image_Mask-R-CNN-master\fast_json_to_dataset.py

(4) Start training

Download pre-trained COCO weights (mask_rcnn_coco.h5) from the

https://github.com/matterport/Mask_RCNN/releases

After the download is complete, please place the pre-trained COCO weights in the

\SPM_image_Mask-R-CNN-master (root directory).

Open \SPM_image_Mask-R-CNN-master\train_test.py

Pretrained weight parameters loaded by the parameter bits in the red box (modification

is not recommended). The pretrained weight parameters are placed in the root directory.

Please modify other detailed parameters in the ShapesConfig class.

And add, delete or modify the categories you need to predict in the load_mask and

load_shapes functions (modification is not recommended).

https://github.com/matterport/Mask_RCNN/releases

S-22

The epoch of layers = 'all' is recommended to be set to twice of the epoch of layers =

'heads', and the former should preferably not be greater than 10 to avoid excessive

training time.

Then run the code to start training.

d) Molecule recognition

(1) Prepare to load weight parameters

After training is complete, you can find the trained weight parameters in

\SPM_image_Mask-R-CNN-master\logs

Where mask_rcnn_shapes_0001.h5 is generated after the first epoch iteration.

And mask_rcnn_shapes_0002.h5 is generated after the second epoch iteration.

Then move the weight parameters generated by the last iteration (For example,

mask_rcnn_shapes_0002.h5 here) to the root directory.

(2) Prepare to load prediction image

Put the picture you want to predict into \SPM_image_Mask-R-CNN-master\images.

(3) Start molecule recognition

Open \SPM_image_Mask-R-CNN-master\predict_big_pic.py

S-23

Modify the name of your weight parameter, the name of the STM image to be predicted,

and modify the label list (the first label list must be "BG" to represent the background,

please do not modify it).

After a while, you will finally get the output image in \SPM_image_Mask-R-CNN-

master\img_cache

S-24

9. Materials and Methods

9.1 Molecular structures

Figure S10. Molecular structures. (a) Molecular structure of molecule A (OBO-doped

[4]triangulene). (b) Molecular structure of molecule B (2,4,6-tri(Pyridin-4-yl)-1,3,5-

triazine). (c) Molecular structure of molecule C ([1,1':4',1''-terphenyl]-4,4''-diamine).

9.2 Methods.

STM characterization.

We used a custom-designed commercial low-temperature STM system (Bosezi (Beijing)

Co. Ltd.) for in situ characterization under ultra-high vacuum conditions of base

pressures below 1×10-10 mbar. The single crystals (MaTeck GmbH) were cleaned by

several cycles of argon sputtering and annealing under UHV conditions until large

terraces separated by monatomic steps were achieved. The measurements were

performed at liquid nitrogen temperature (~ 77.6 K) if not stated otherwise. STM

imaging was performed with the constant-current mode at typical bias ranges of -1.0 to

-2.0 V and current ranges of 50 to 150 pA.

Sample preparation.

The molecule precursor A is commercially available from Tansoole and the synthesis

of molecule precursor B is reported elsewhere.[5] After degassing under UHV condition,

the molecular precursors were thermally evaporated from a three-fold organic

evaporator onto the metal surfaces in a sequential order. The sublimation rates of both

molecular precursors were monitored by a quartz crystal microbalance (SQM-160,

INFICON). We developed a LabVIEW based program to ensure that the molecular

evaporation rate was stable for molecular evaporation.

Machine learning model and the program.

a. Mask R-CNN. Computer vision has made remarkable progress with the development

of deep learning and convolutional neural network (CNN). CNN enables parameter

sharing so that the quantity of parameters is reduced greatly compared with fully-

connected neural networks.[6,7] Region-CNN (R-CNN) introduces object recognition

based on CNN.[8,9] The recognition efficiency and accuracy have been significantly

improved in Fast R-CNN[10] and Faster R-CNN.[11] Eventually, pixel-to-pixel instance

segmentations of objects were achieved in Mask R-CNN by applying feature pyramid

and ROI align,[12,13] which provides the most intuitive results for human in the process

of analyzing digital images. Mask R-CNN consists of three layers of machine learning

networks. The feature pyramid network (FPN)[14] is responsible for extracting image

S-25

features at multiple scales. The region proposal network (RPN)[15] determines the

molecular location, and the region of interest (RoI) module can determine the type of

molecules and perform semantic processing. More details can be found in

Supplementary note 9.3.

b. NMS filter. NMS is used to filter the anchor boxes in the RPN and to filter the

prediction boxes of the recognition results. When the Intersection over Union (IoU) of

the two borders is large enough, the bounding box with the lower score will be removed.

NMS has a significant effect on removing false positive rates. More details about NMS

operation can be found in Supplementary note 6.

c. Padding Image. One of the future goals of this framework is to perform molecular

recognitions on unknown STM images or images with minor prior knowledge, such

that we will be able to obtain real-time data analysis while measuring. To this end, we

have tested the model performance by varying the image resolutions between the

training and testing data.

In this work, we reduced the image resolution of training datasets with the following

way. As shown in the figure below, the original training image will be added with a

back padding, followed by the process of resizing to produce the low-resolution image.

By controlling the width of the pad-ding, multi-scale images of training data can be

obtained.

d. Transfer Learning and Training. Due to the limited data of SPM images, the

convergence of the convolutional backbone network is extremely difficult, which

means that transfer learning is essential. We first adopt the coco 2017 train images

dataset[16] to train our Mask R-CNN model. The coco dataset contains tens of thousands

of objects’ photos of daily life, including 80 categories. In this study, the weights of the

bottom of the backbone network FPN would be similar even the recognition types are

inconsistent with the coco dataset.[8] During the training process, the weight parameters

outside the convolutional backbone network of the Mask R-CNN, such as Classification

branch, Bounding box regression branch and Mask branch, are the focus of training.

e. t-SNE. t-SNE is an unsupervised machine learning algorithm for finding patterns in

the data based on the similarity of data points. The similarity of points is calculated as

the conditional probability. It then attempts to minimize a cost function, which is

defined as a single Kullback−Leibler divergence[17] between joint probability

distributions in the high-dimensional space and the low-dimensional space. By using a

S-26

student’s t-distribution with a single degree of freedom it computes the similarity

between two points in the low-dimensional space. The experimental details of t-SNE

are provided in Supplementary note 1.

e. Image augmentation. Data augmentation technology is able to quickly obtain a large

amount of image data.[18–20] In the data augmentation process, we first performed

geometric augmentations, followed by the other augmentation techniques. It is worth

noting that the orientations and positions of molecules in the images after geometric

augmentations have changed, which means that the labelling information in the

corresponding image label files also needs to be changed accordingly to ensure the

validity of the labelled data. Operational details of data augmentations can be found in

Supplementary note 2.

f. Programming environment and hardware. The program of the deep learning

framework was run on a personal computer. The requirements of the Programming

environment and the references of the hardware can be found in Supplementary note 8.

9.3 More details on Mask R-CNN.

FPN extracts feature maps of different scales from input SPM images and, hence,

enables Mask R-CNN to detect molecules of various sizes. In our case, they are SPM

images with different resolutions. FPN includes five convolutional blocks connected in

series built with a total of 50 convolutional and ReLu layers (ResNet-50)[21]. With the

increase in the number of convolutional layers, the feature map is expected to have

higher semantic information, but it is also accompanied by the loss of information of

the small target of the original image. The FPN layer adopts the strategy of upsampling

and stacking the feature map to simultaneously retain high semantic information and

small target information. The detailed architecture is provided in Figure S1.

The RPN layer extracts the regions of interest from the feature maps of each layer. For

each feature map input to this layer, fifteen anchor boxes will be generated by the RPN

network centered on each pixel on the feature map. The anchor boxes that exceed the

image boundary will be removed. It ensures that each molecule can be covered by one

or more anchor boxes. All anchor boxes will be fed into a simple CNN-based evaluation

network, where the information in each anchor box is scored and the positions are

adjusted based on linear regressions. The score of the anchor box is positively correlated

with the probability that the target molecule is contained in the anchor box. The non-

maximum suppression algorithm will filter a large part of anchor boxes with a high

overlap and low scores.

The ROI align layer pools the feature map information in the anchor box into vectors

of a uniform 7*7 pixels size through bilinear interpolation. Subsequently, the feature

vectors are fed into three different branches as follows.

1. Classification branch. Here the feature vectors will be flattened and fed into two fully

connected layers (FC) [22], using the SoftMax function[23] to output a three-channel

matrix corresponding to the probability that the feature vector is molecule A, molecule

S-27

B or background respectively. 2. Bounding box regression branch. The feature vector

will be flattened and fed into two FCs, the final linear regression outputs a four-channel

matrix representing the bounding box fine-tuning parameters. 3. Mask branch. The

feature vector will be processed by the deconvolution layer, and the sigmoid function

will generate the mask pixel by pixel. The principle of the mask branch is the decoding

part of the fully convolutional network (FCN)[24] where the convolutional backbone

network (Resnet-50) is the encoding part.

The category, bounding box position and mask information will be output after a final

NMS algorithm to filter the overlapping results after integration to get the output.

10. References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G.

Irving, M. Isard, in 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16), 2016, pp. 265–283.

[2] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.

Brucher, M. Perrot, E. Duchesnay, Journal of Machine Learning Research 2011, 12,

2825–2830.

[3] K. Wada, Accessed: Oct 2016, 2, 2020.

[4] A. B. Jung, K. Wada, J. Crall, S. Tanaka, J. Graving, C. Reinders, S. Yadav, J. Banerjee,

G. Vecsei, A. Kraft, Z. Rui, J. Borovec, C. Vallentin, S. Zhydenko, K. Pfeiffer, B. Cook,

I. Fernández, F.-M. De Rainville, C.-H. Weng, A. Ayala-Acevedo, R. Meudec, M. Laporte,

others, 2020.

[5] X. Chen, D. Tan, J. Dong, T. Ma, D.-T. Yang, 2022, DOI 10.26434/chemrxiv-2022-9f544

[6] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J.

Santamaría, M. A. Fadhel, M. Al-Amidie, L. Farhan, Journal of big Data 2021, 8, 1–74.

[7] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J.

Cai, Pattern recognition 2018, 77, 354–377.

[8] R. Girshick, J. Donahue, T. Darrell, J. Malik, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2014, pp. 580–587.

[9] S. Albawi, T. A. Mohammed, S. Al-Zawi, in 2017 International Conference on

Engineering and Technology (ICET), 2017, pp. 1–6.

[10] R. Girshick, in Proceedings of the IEEE International Conference on Computer Vision,

2015, pp. 1440–1448.

[11] S. Ren, K. He, R. Girshick, J. Sun, Advances in neural information processing systems

2015, 28.

[12] K. He, G. Gkioxari, P. Dollár, R. Girshick, in Proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 2961–2969.

[13] T. Bai, Y. Pang, J. Wang, K. Han, J. Luo, H. Wang, J. Lin, J. Wu, H. Zhang, Remote

Sensing 2020, 12, 762.

[14] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117–2125.

[15] A. Mikołajczyk, M. Grochowski, in 2018 International Interdisciplinary PhD Workshop

S-28

(IIPhDW), 2018, pp. 117–122.

[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. L. Zitnick,

in European Conference on Computer Vision, Springer, 2014, pp. 740–755.

[17] F. Perez-Cruz, in 2008 IEEE International Symposium on Information Theory, 2008, pp.

1666–1670.

[18] C. Shorten, T. M. Khoshgoftaar, J Big Data 2019, 6, 60.

[19] J. Wang, S. Mall, L. Perez, Convolutional Neural Networks Vis. Recognit 2017, 11, 1–8.

[20] D. M. Pelt, J. A. Sethian, Proceedings of the National Academy of Sciences 2018, 115,

254–259.

[21] K. He, X. Zhang, S. Ren, J. Sun, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 770–778.

[22] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, K.-R. Müller, Proceedings of the

IEEE 2021, 109, 247–278.

[23] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, S. Khudanpur, in 2011 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,

2011, pp. 5528–5531.

[24] J. Long, E. Shelhamer, T. Darrell, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 3431–3440.

